• Zipper assembly of SHJ photosystems: focus on red naphthalenediimides, optoelectronic finetuning and topological matching
    R. Bhosale, R.S.K. Kishore, V. Ravikumar, O. Kel, E. Vauthey, N. Sakai and S. Matile
    Chemical Science, 1 (2010), p357-368
    DOI:10.1039/C0SC00177E | unige:14679 | Abstract | Article HTML | Article PDF
The objective of this study was to synthesize multichromophoric donor-acceptor systems with non-halogenated red (RO) naphthalenediimides (NDIs) attached along p-oligophenyl (POP) and oligophenylethynyl (OPE) scaffolds, and to evaluate their usefulness for zipper assembly of artificial photosystems. Compared to halogenated red NDIs (RCl, RBr), the HOMO of RO is 0.2 eV higher and the HOMO/LUMO gap 0.1 eV smaller, the latter introducing a shade of pink. Consistent with higher HOMO levels, RO zippers generate less photocurrent than RBr zippers in their respective action spectra. RO zippers are less sensitive to topological mismatch than RBr zippers and thus more robust and broadly applicable. Transient absorption measurements reveal efficient electron transfer from excited OPE donors to RO acceptors and less efficient hole injection from excited RO donors into OPE acceptors. Both processes demonstrate compatibility with OMARG-SHJ photosystems (supramolecular n/p-heterojunctions with oriented multicolored antiparallel redox gradients). Decreasing hole transfer with decreasing HOMO energy differences further demonstrates that SHJ-type hole injection disappears gradually (rather than abruptly). Losses in photonic energy during this process can thus be minimized by optoelectronic finetuning, but eventual gains in open circuit voltages risk coming with complementary losses in short circuit current.
  • Topologically Matching Supramolecular n/p-Heterojunction Architectures
    R. Bhosale, A. Perez-Velasco, V. Ravikumar, R.S.K. Kishore, O. Kel, A. Gomez-Casado, P. Jonkheijm, J. Huskens, P. Maroni, M. Borkovec, T. Sawada, E. Vauthey, N. Sakai and S. Matile
    Angewandte Chemie International Edition, 48 (35) (2009), p6461-6464
    DOI:10.1002/anie.200902551 | unige:4796 | Abstract | Article HTML | Article PDF
 
Matching matters when building supramolecular n/p-heterojunction photosystems on solid supports that excel with efficient photocurrent generation, important critical thickness, smooth surfaces, and flawless responsiveness to functional probes for the existence of operational intra- and interlayer recognition motifs.
  • Ordered and Oriented Supramolecular n/p-Heterojunction Surface Architectures: Completion of the Primary Color Collection
    R.S.K. Kishore, O. Kel, N. Banerji, D. Emery, G. Bollot, J. Mareda, A. Gomez-Casado, P. Jonkheijm, J. Huskens, P. Maroni, M. Borkovec, E. Vauthey, N. Sakai and S. Matile
    Journal of the American Chemical Society, 131 (31) (2009), p11106-11116
    DOI:10.1021/ja9030648 | unige:6173 | Abstract | Article HTML | Article PDF
In this study, we describe synthesis, characterization, and zipper assembly of yellow p-oligophenyl naphthalenediimide (POP-NDI) donor−acceptor hybrids. Moreover, we disclose, for the first time, results from the functional comparison of zipper and layer-by-layer (LBL) assembly as well as quartz crystal microbalance (QCM), atomic force microscopy (AFM), and molecular modeling data on zipper assembly. Compared to the previously reported blue and red NDIs, yellow NDIs are more π-acidic, easier to reduce, and harder to oxidize. The optoelectronic matching achieved in yellow POP-NDIs is reflected in quantitative and long-lived photoinduced charge separation, comparable to their red and much better than their blue counterparts. The direct comparison of zipper and LBL assemblies reveals that yellow zippers generate more photocurrent than blue zippers as well as LBL photosystems. Continuing linear growth found in QCM measurements demonstrates that photocurrent saturation at the critical assembly thickness occurs because more charges start to recombine before reaching the electrodes and not because of discontinued assembly. The found characteristics, such as significant critical thickness, strong photocurrents, large fill factors, and, according to AFM images, smooth surfaces, are important for optoelectronic performance and support the existence of highly ordered architectures.
  • Artificial tongues and leaves
    N. Banerji, R. Bhosale, G. Bollot, S.M. Butterfield, A. Fürstenberg, V. Gorteau, S. Hagihara, A. Hennig, S. Maity, J. Mareda, S. Matile, F. Mora, A. Perez-Velasco, V. Ravikumar, R.S.K. Kishore, N. Sakai, D.-H. Tran and E. Vauthey
    Pure and Applied Chemistry, 80 (8) (2008), p1873-1882
    DOI:10.1351/pac200880081873 | unige:8008 | Abstract | Article PDF
The objective with synthetic multifunctional nanoarchitecture is to create large suprastructures with interesting functions. For this purpose, lipid bilayer membranes or conducting surfaces have been used as platforms and rigid-rod molecules as shape-persistent scaffolds. Examples for functions obtained by this approach include pores that can act as multicomponent sensors in complex matrices or rigid-rod π-stack architecture for artificial photosynthesis and photovoltaics.

Google

 


Redisplay in format 

                 

    in encoding 

  
Format for journal references
Format for book references
Last update Tuesday March 26 2024